Optimum Approximation for ?–Lie Homomorphisms and Jordan ?–Lie Homomorphisms in ?–Lie Algebras by Aggregation Control Functions
نویسندگان
چکیده
In this work, by considering a class of matrix valued fuzzy controllers and using (?,?)-Cauchy–Jensen additive functional equation ((?,?)-CJAFE), we apply the Radu–Mihet method (RMM), which is derived from an alternative fixed point theorem, obtain existence unique solution H–U–R stability (Hyers–Ulam–Rassias) for homomorphisms Jordan on Lie algebras with ? members (?-LMVFA). With regards to each consider aggregation function as value control investigate results obtained.
منابع مشابه
Approximate n-Lie Homomorphisms and Jordan n-Lie Homomorphisms on n-Lie Algebras
and Applied Analysis 3 Park and Rassias 59 proved the stability of homomorphisms in C∗-algebras and Lie C∗-algebras and also of derivations on C∗-algebras and Lie C∗-algebras for the Jensen-type functional equation μf ( x y 2 ) μf ( x − y 2 ) − fμx 0 1.6 for all μ ∈ T1 : {λ ∈ C; |λ| 1}. In this paper, by using the fixed-point methods, we establish the stability of n-Lie homomorphisms and Jordan...
متن کاملApproximation of Jordan homomorphisms in Jordan Banach algebras RETRACTED PAPER
In this paper, we investigate the generalized Hyers-Ulam stability of Jordan homomorphisms in Jordan Banach algebras for the functional equation begin{align*} sum_{k=2}^n sum_{i_1=2}^ksum_{i_2=i_{1}+1}^{k+1}cdotssum_{i_n-k+1=i_{n-k}+1}^n fleft(sum_{i=1,i not=i_{1},cdots ,i_{n-k+1}}^n x_{i}-sum_{r=1}^{n-k+1} x_{i_{r}}right) + fleft(sum_{i=1}^{n}x_{i}right)-2^{n-1} f(x_{1}) =0, end{align*} where ...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملSchur-Like Forms for Matrix Lie Groups, Lie Algebras and Jordan Algebras
We describe canonical forms for elements of a classical Lie group of matrices under similarity transformations in the group. Matrices in the associated Lie algebra and Jordan algebra of matrices inherit related forms under these similarity transformations. In general, one cannot achieve diagonal or Schur form, but the form that can be achieved displays the eigenvalues of the matrix. We also dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10101704